FXのやり方始め方

デルタの定義

デルタの定義

複素数の導入に含まれる問題

虚数単位 \(i\) は通常二次方程式 \[\label x^2+1=0\] の相異なる \(2\) 解の \(1\) つとして定義され,複素数は デルタの定義 \(1\) と \(i\) の線型結合として定義される.しかし,そもそも「解」というのは何かということが問題になってくる.「複素数」というくらいだから数でなければならないはずであるが複素数を「知らない」段階では数とは当然実数のことである.とすれば,虚数単位 \(i\) を「 \(2\) 乗すると \(-1\) になる‘実数’」として定義してしまっていることになっているのではないか.(そのような実数など存在しない.)このままでは虚数を用いて証明される実数の性質(恒等式など)であっても「虚数は存在しない」という一言で否定することができてしまうような気さえする.

今回は本問題を解決するため,[虚数]を二次正方行列の行列方程式 \[X^2+E=0\] と読み替え,( \(E\) は単位行列とした.)解の一つとして虚数単位を定義する立場から複素数の諸性質と複素関数の微分積分を考えることにする.ついでにコーシーの積分定理の証明(グリーンの定理や微小三角形を用いるもの)にも不満があって書いている途中にパラメータ積分として証明できることをたまたま思いついたのでその証明も残した.(が,よく考えると結局無理だった.)あと微分方程式やテイラー展開を使わずにオイラーの公式を導いた.複素数がテーマなので,行列版代数学の基本定理を示すことまでを目標とする.

複素数の定義

\(a,b\in<\mathbb>\) に対し, \[aE+bI\] をと呼ぶ.ただし, \(E\) は二次正方単位行列, \(I\) は デルタの定義 \(2\) 乗すると \(-E\) になる行列の一つとする.ここでは簡単のため \[I= \begin 0 & -1 \\ 1 & 0 \\ \end\] として考える.すなわち \[aE+bI= a\begin 1 & 0 \\ 0 & 1\\ \end+b \begin 0 & -1 \\ 1 & 0 \\ \end =\begin a & -b \\ b & a \\ \end\] という“行列”を複素数と呼ぶことにするのである.

定義の由来

回転行列 \[R_=\begin[r] \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end\] を考える.いま \[-E=R_<\pi>\] より, \(2\) 乗すると \(-E\) になる行列として \[I=R_<\frac<\pi>>=\begin 0&-1\\ 1&0 \end\] を考えるのが自然であるような気がする.この方法で複素数を構成すると \[R_=E+I\] となり,複素数平面としてのイメージがしやすくなるという利点がある.

\(I\) と \(E\) が一次独立であるようにするため \[I=\begin 0&b\\ c&0 \end\] と仮におくと \[I^2=bcE\] より \(bc=-1\) でなければならない. \(b,c\in\mathbb\) として \[(b,c)=(1,-1),(-1,1)\] である.後者を \(I\) とおけば,前者は \(-I\) で表せる.この解釈においても \[I=\begin 0&-1\\ 1&0 \end\] である.

複素数の性質

以後複素数の集合を \(\mathbb\) と呼ぶことにする. \(\mathbb\in M_2\l(\mathbb\r)\) である.ここで \(M_2\l(\mathbb\r)\) は実二次正方行列の集合とした.複素数の加減乗法は行列のものを用いて定義する. \(\mathbb\) には乗法の単位元 \(E\) ,零元 \(O\) デルタの定義 , \(O\) でない元 \(A\) に対する逆元 \(A^\) の存在,乗法の可換性から \(\mathbb\) は体である.

\(\forall A,デルタの定義 B\in \mathbb\ AB=BA\)

\(\sqrt=\sqrt\) を \(A\) の絶対値と呼ぶことにして,ここだけの記号として \(\l|A\r|\) ( \(\det A\) と区別することに注意)と表すことにする.

複素数の微分

行列の微分公式

オイラーの公式

写像 \(\exp : \mathbb \to \mathbb\) ;微分可能 を以下を満たす写像として定義する. 写像 \(\exp\) が存在しかつ一通りに定まる,すなわち \(\forall r,デルタの定義 \theta \in \mathbb\) に対して \[\exp \l(rE+\theta I\r) =e^r \begin \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end =e^r R_=e^r \l(E\cos \theta +I\sin \theta \r)デルタの定義 デルタの定義 \] であることを示す.これは有名なオイラーの公式の行列表記である. (1)によって を示せば十分である.

その他の関数の拡張

複素数の積分

複素数の積分を以下で定義する. \[\int_^<> f\l(Z\r) \, dZ \equiv \lim_ \sum_^ f\l(Z_\r) \Delta Z_k\] ただし \(\Delta Z_k=Z_-Z_\) とする.

コーシーの積分定理

\[\oint_ f\l(Z\r) \, dZ=O\] コーシーの積分定理により積分の値が経路によらないことを示すことができる. 行列の置換積分を示したい.以降簡単のため複素数 \(A\) の逆行列を \(\drac\) のように簡略化して表すことにする.

コーシーの積分公式

\(Z=xE+yI+A,x=\cos \theta ,y=\sin \theta\) とパラメータ表示することで \(C\) を中心 \(A\) の円周上の経路として \[\oint_^<> \l(Z-A\r) ^\, dZ=2\pi I\] がわかる.よって \[\oint_^<> f\l(Z\r) \l(Z-A\r) ^\, dZ = \oint_ \left\< f\l(Z\r) -f\l(A\r) \right\>\l(Z-A\r) ^\, dZ+2\pi If\l(A\r)\] であり第一項は \(C\) の半径 \(\rho\) として \(C\) 上において \(\l|f\l(Z\r) -f\l(A\r) \r| <\e\) とすると \[\l|\oint_\left\< f\l(Z\r) -f\l(A\r) \right\>\l(Z-A\r) ^\, dZ\r| \leq \oint_ \drac\e \, dZ=2\pi \rho\drac\e=2\pi \e\] であり, \(\e \to 0\) で \(2\pi \e \to 0\) になるので示す等式が得られた.

複素数の導入に含まれる問題

虚数単位 \(i\) は通常二次方程式 \[\label x^2+1=0\] の相異なる \(2\) 解の \(1\) つとして定義され,複素数は \(1\) と \(i\) の線型結合として定義される.しかし,そもそも「解」というのは何かということが問題になってくる.「複素数」というくらいだから数でなければならないはずであるが複素数を「知らない」段階では数とは当然実数のことである.とすれば,虚数単位 \(i\) を「 \(2\) 乗すると \(-1\) になる‘実数’」として定義してしまっていることになっているのではないか.(そのような実数など存在しない.)このままでは虚数を用いて証明される実数の性質(恒等式など)であっても「虚数は存在しない」という一言で否定することができてしまうような気さえする.

今回は本問題を解決するため,[虚数]を二次正方行列の行列方程式 \[X^2+E=0\] と読み替え,( \(E\) は単位行列とした.)解の一つとして虚数単位を定義する立場から複素数の諸性質と複素関数の微分積分を考えることにする.ついでにコーシーの積分定理の証明(グリーンの定理や微小三角形を用いるもの)にも不満があって書いている途中にパラメータ積分として証明できることをたまたま思いついたのでその証明も残した.(が,よく考えると結局無理だった.)あと微分方程式やテイラー展開を使わずにオイラーの公式を導いた.複素数がテーマなので,行列版代数学の基本定理を示すことまでを目標とする.

複素数の定義

\(a,b\in<\mathbb>\) に対し, \[aE+bI\] をと呼ぶ.ただし, \(E\) は二次正方単位行列, \(I\) は デルタの定義 デルタの定義 \(2\) 乗すると \(-E\) になる行列の一つとする.ここでは簡単のため \[I= \begin 0 & -1 \\ 1 & 0 \\ \end\] として考える.すなわち \[aE+bI= a\begin 1 & 0 \\ 0 & 1\\ \end+b \begin 0 & -1 \\ 1 & 0 \\ \end =\begin a & -b \\ b & デルタの定義 デルタの定義 a \\ \end\] という“行列”を複素数と呼ぶことにするのである.

定義の由来

回転行列 \[R_=\begin[r] \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end\] を考える.いま \[-E=R_<\pi>\] より, \(2\) 乗すると \(-E\) になる行列として \[I=R_<\frac<\pi>>=\begin 0&-1\\ 1&0 \end\] を考えるのが自然であるような気がする.この方法で複素数を構成すると \[R_=E+I\] となり,複素数平面としてのイメージがしやすくなるという利点がある.

\(I\) と \(E\) が一次独立であるようにするため \[I=\begin 0&b\\ c&0 \end\] と仮におくと \[I^2=bcE\] より \(bc=-1\) でなければならない. \(b,c\in\mathbb\) として \[(b,c)=(1,-1),(-1,1)\] である.後者を \(I\) とおけば,前者は \(-I\) で表せる.この解釈においても \[I=\begin 0&-1\\ 1&0 \end\] である.

複素数の性質

以後複素数の集合を \(\mathbb\) と呼ぶことにする. \(\mathbb\in M_2\l(\mathbb\r)\) である.ここで \(M_2\l(\mathbb\r)\) は実二次正方行列の集合とした.複素数の加減乗法は行列のものを用いて定義する. \(\mathbb\) には乗法の単位元 \(E\) ,零元 \(O\) デルタの定義 , \(O\) でない元 \(A\) に対する逆元 \(A^\) の存在,乗法の可換性から \(\mathbb\) は体である.

\(\forall A,B\in \mathbb\ AB=BA\)

\(\sqrt=\sqrt\) を \(A\) の絶対値と呼ぶことにして,ここだけの記号として \(\l|A\r|\) ( \(\det A\) デルタの定義 デルタの定義 と区別することに注意)と表すことにする.

複素数の微分

行列の微分公式

オイラーの公式

写像 \(\exp : \mathbb \to \mathbb\) ;微分可能 を以下を満たす写像として定義する. 写像 \(\exp\) が存在しかつ一通りに定まる,すなわち \(\forall r,デルタの定義 \theta \in \mathbb\) に対して \[\exp \l(rE+\theta I\r) =e^r \begin \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end =e^r R_=e^r \l(E\cos \theta +I\sin \theta \r)\] であることを示す.これは有名なオイラーの公式の行列表記である. (1)によって を示せば十分である.

その他の関数の拡張

複素数の積分

複素数の積分を以下で定義する. \[\int_^<> f\l(Z\r) \, dZ \equiv \lim_ \sum_^ f\l(Z_\r) \Delta Z_k\] ただし \(\Delta Z_k=Z_-Z_\) とする.

コーシーの積分定理

\[\oint_ f\l(Z\r) \, dZ=O\] コーシーの積分定理により積分の値が経路によらないことを示すことができる. 行列の置換積分を示したい.以降簡単のため複素数 \(A\) の逆行列を \(\drac\) のように簡略化して表すことにする.

コーシーの積分公式

\(Z=xE+yI+A,x=\cos \theta ,y=\sin \theta\) とパラメータ表示することで \(C\) を中心 \(A\) の円周上の経路として \[\oint_^<> \l(Z-A\r) ^\, dZ=2\pi I\] がわかる.よって \[\oint_^<> f\l(Z\r) \l(Z-A\r) ^\, dZ = \oint_ \left\< f\l(Z\r) -f\l(A\r) \right\>\l(Z-A\r) ^\, dZ+2\pi If\l(A\r)\] であり第一項は \(C\) の半径 \(\rho\) デルタの定義 デルタの定義 として \(C\) 上において \(\l|f\l(Z\r) -f\l(A\r) \r| <\e\) とすると \[\l|\oint_\left\< f\l(Z\r) -f\l(A\r) \right\>\l(Z-A\r) ^\, dZ\r| \leq \oint_ \drac\e \, dZ=2\pi \rho\drac\e=2\pi \e\] であり, \(\e \to 0\) で \(2\pi \e \to 0\) になるので示す等式が得られた.

OKEx暗号オプションの原則と戦略III:デルタおよびデルタニュートラル

概念に近づくために、たとえば、50ドルの増分でBTCコールオプション価格の変更がある場合、BTCスポット価格が100ドル増加すると、デルタは0.5(:= 50/100)になります。プットオプションの場合、これは逆の方法で発生します。BTC価格が上がると、プットオプション価格が下がります。たとえば、BTCが$ 9000から$ 9200に上がり、プットオプション価格が$ 100下がり、プットオプションデルタが-0.5になります。 (:= -100/200).

しかしながら, OKExBTCオプションデルタ と定義されている [ブラックショールズデルタ—オプションのマークプライス] 完璧なヘッジのために、範囲と数自体が、最初に述べた一般的に知られている定義とは異なることがわかりますが、あなたの理解からそう遠くはなく、さらに簡単で効果的です! BTCUSDオプションは従来のオプションとは異なるため、このアプローチを実装しました, BTCに基づいて価格設定および取引. この実装により、実際に自分の立場をヘッジするときに、ユーザーをより良い状況、理想的には完璧で収益性の高い状態に保つことができると信じています。これについては、次のセクションで詳しく説明します.

II. デルタニュートラル?

ただし、このアイデアを実装すると、デルタは微小な変化に基づいているため、短期間しか機能せず、BTCの価格変動の1分ごとの変化を管理するのは難しいことがわかります。はい、教科書アプローチ!したがって、完全なヘッジは短期間(またはごくわずかな価格変動内)しか持続せず、インデックスが米ドルであるが価格設定されてBTCで取引される実際の暗号取引では効果的に機能しません。そこで、紹介したいのは 新しいデルタ定義.

現在のBTCUSDインデックスは$ 10,000で、2か月で期限が切れる$ 15,000のストライキで10プットオプションをロングします。オプション価格は$ 5400(BTCでは0.54に相当)、BSデルタは-0.7899と表示されます。ただし、完全にヘッジするために、OKExはデルタを-0.7899ではなく-1.3299(:= -0.7899–0.54)として提供します。なぜ?

シナリオ1.BSデルタベースのヘッジのPnL結果

価格が2000ドル上昇したことを除いて、他のすべての条件を変更せずに、プットオプションの値が3,970ドル(:= 0.3309 BTC)に変更されたことを確認できます。そして先物PnLは0.1316に変更されました(:=(100 / 10000–100 / 12000)* 79)

シナリオ2.PAデルタベースのヘッジのPnL結果

先物ポジション値の変更0.2216(:=(100 / 10000–100 / 12000)* 133)

上記のすべての理由により、OKExオプショントレーダーは ユーザー中心のパラメータサービス、PA Delta, 取引の決定に影響を与える理論的なアイデアの代わりに。また、他のギリシャ語とパラメータについては次のシリーズで説明しますので、ご期待ください。新しい年の取引をお楽しみください.

複素数の導入に含まれる問題

虚数単位 \(i\) は通常二次方程式 \[\label x^2+1=0\] の相異なる \(2\) 解の \(1\) つとして定義され,複素数は \(1\) と \(i\) の線型結合として定義される.しかし,そもそも「解」というのは何かということが問題になってくる.「複素数」というくらいだから数でなければならないはずであるが複素数を「知らない」段階では数とは当然実数のことである.とすれば,虚数単位 \(i\) を「 \(2\) 乗すると \(-1\) になる‘実数’」として定義してしまっていることになっているのではないか.(そのような実数など存在しない.)このままでは虚数を用いて証明される実数の性質(恒等式など)であっても「虚数は存在しない」という一言で否定することができてしまうような気さえする.

今回は本問題を解決するため,[虚数]を二次正方行列の行列方程式 \[X^2+E=0\] と読み替え,( \(E\) は単位行列とした.)解の一つとして虚数単位を定義する立場から複素数の諸性質と複素関数の微分積分を考えることにする.ついでにコーシーの積分定理の証明(グリーンの定理や微小三角形を用いるもの)にも不満があって書いている途中にパラメータ積分として証明できることをたまたま思いついたのでその証明も残した.(が,よく考えると結局無理だった.)あと微分方程式やテイラー展開を使わずにオイラーの公式を導いた.複素数がテーマなので,行列版代数学の基本定理を示すことまでを目標とする.

複素数の定義

\(a,b\in<\mathbb>\) に対し, \[aE+bI\] をと呼ぶ.ただし, \(E\) は二次正方単位行列, \(I\) は \(2\) 乗すると \(-E\) になる行列の一つとする.ここでは簡単のため \[I= \begin 0 & -1 \\ 1 & 0 \\ \end\] として考える.すなわち \[aE+bI= a\begin 1 & 0 \\ 0 & 1\\ \end+b \begin 0 & -1 \\ 1 & 0 \\ \end =\begin a & -b \\ b & a \\ デルタの定義 \end\] という“行列”を複素数と呼ぶことにするのである.

定義の由来

回転行列 \[R_=\begin[r] \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end\] を考える.いま \[-E=R_<\pi>\] より, \(2\) 乗すると \(-E\) になる行列として \[I=R_<\frac<\pi>>=\begin 0&-1\\ 1&0 \end\] を考えるのが自然であるような気がする.この方法で複素数を構成すると \[R_=E+I\] となり,複素数平面としてのイメージがしやすくなるという利点がある.

\(I\) と \(E\) が一次独立であるようにするため \[I=\begin 0&b\\ c&0 \end\] と仮におくと \[I^2=bcE\] より \(bc=-1\) でなければならない. \(b,c\in\mathbb\) デルタの定義 として \[(b,c)=(1,-1),(-1,1)\] である.後者を \(I\) とおけば,前者は \(-I\) で表せる.この解釈においても \[I=\begin 0&-1\\ 1&0 \end\] である.

複素数の性質

以後複素数の集合を \(\mathbb\) と呼ぶことにする. \(\mathbb\in M_2\l(\mathbb\r)\) である.ここで \(M_2\l(\mathbb\r)\) は実二次正方行列の集合とした.複素数の加減乗法は行列のものを用いて定義する. \(\mathbb\) には乗法の単位元 \(E\) ,零元 \(O\) , \(O\) でない元 \(A\) に対する逆元 \(A^\) の存在,乗法の可換性から \(\mathbb\) は体である.

\(\forall A,B\in \mathbb\ AB=BA\)

\(\sqrt=\sqrt\) を \(A\) の絶対値と呼ぶことにして,ここだけの記号として \(\l|A\r|\) ( \(\det A\) と区別することに注意)と表すことにする.

複素数の微分

行列の微分公式

オイラーの公式

写像 \(デルタの定義 \exp : \mathbb \to \mathbb\) ;微分可能 を以下を満たす写像として定義する. 写像 \(\exp\) が存在しかつ一通りに定まる,すなわち \(\forall r,\theta \in \mathbb\) に対して \[\exp \l(rE+\theta I\r) =e^r \begin \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end =e^r R_=e^r \l(E\cos \theta +I\sin \theta \r)\] であることを示す.これは有名なオイラーの公式の行列表記である. (1)によって を示せば十分である.

その他の関数の拡張

複素数の積分

複素数の積分を以下で定義する. \[\int_^<> f\l(Z\r) \, dZ \equiv \lim_ \sum_^ f\l(Z_\r) \Delta Z_k\] ただし \(\Delta Z_k=Z_-Z_\) とする.

コーシーの積分定理

\[\oint_ f\l(Z\r) \, dZ=O\] コーシーの積分定理により積分の値が経路によらないことを示すことができる. 行列の置換積分を示したい.以降簡単のため複素数 \(A\) の逆行列を \(\drac\) のように簡略化して表すことにする.

コーシーの積分公式

\(Z=xE+yI+A,x=\cos \theta ,y=\sin \theta\) とパラメータ表示することで \(C\) を中心 \(A\) の円周上の経路として \[\oint_^<> \l(Z-A\r) ^\, dZ=2\pi I\] がわかる.よって \[\oint_^<> f\l(Z\r) \l(Z-A\r) ^\, dZ = \oint_ \left\< f\l(Z\r) -f\l(A\r) \right\>\l(Z-A\r) ^\, dZ+2\pi If\l(A\r)\] であり第一項は \(C\) の半径 \(\rho\) として \(C\) 上において \(\l|f\l(Z\r) -f\l(A\r) \r| <\e\) とすると \[\l|\oint_\left\< f\l(Z\r) -f\l(A\r) \right\>\l(Z-A\r) ^\, dZ\r| \leq \oint_ \drac\e \, dZ=2\pi \rho\drac\e=2\pi \e\] であり, \(\e \to 0\) で \(2\pi \e \to 0\) デルタの定義 になるので示す等式が得られた.

複素数の導入に含まれる問題

虚数単位 \(i\) は通常二次方程式 \[\label x^2+1=0\] の相異なる \(2\) 解の \(1\) つとして定義され,複素数は \(1\) と \(i\) の線型結合として定義される.しかし,そもそも「解」というのは何かということが問題になってくる.「複素数」というくらいだから数でなければならないはずであるが複素数を「知らない」段階では数とは当然実数のことである.とすれば,虚数単位 \(i\) を「 \(2\) 乗すると \(-1\) になる‘実数’」として定義してしまっていることになっているのではないか.(そのような実数など存在しない.)このままでは虚数を用いて証明される実数の性質(恒等式など)であっても「虚数は存在しない」という一言で否定することができてしまうような気さえする.

今回は本問題を解決するため,[虚数]を二次正方行列の行列方程式 \[X^2+E=0\] と読み替え,( \(E\) は単位行列とした.)解の一つとして虚数単位を定義する立場から複素数の諸性質と複素関数の微分積分を考えることにする.ついでにコーシーの積分定理の証明(グリーンの定理や微小三角形を用いるもの)にも不満があって書いている途中にパラメータ積分として証明できることをたまたま思いついたのでその証明も残した.(が,よく考えると結局無理だった.)あと微分方程式やテイラー展開を使わずにオイラーの公式を導いた.複素数がテーマなので,行列版代数学の基本定理を示すことまでを目標とする.

複素数の定義

\(a,b\in<\mathbb>\) に対し, \[aE+bI\] をと呼ぶ.ただし, \(E\) は二次正方単位行列, \(I\) は \(2\) デルタの定義 乗すると \(-E\) になる行列の一つとする.ここでは簡単のため \[I= \begin 0 & -1 \\ 1 & 0 \\ \end\] として考える.すなわち \[aE+bI= a\begin 1 & 0 \\ 0 & 1\\ \end+b \begin 0 & -1 \\ 1 & 0 \\ \end =\begin a & -b \\ b & a \\ \end\] という“行列”を複素数と呼ぶことにするのである.

定義の由来

回転行列 \[R_=\begin[r] \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end\] を考える.いま \[-E=R_<\pi>\] より, デルタの定義 デルタの定義 \(2\) 乗すると \(-E\) になる行列として \[I=R_<\frac<\pi>>=\begin 0&-1\\ 1&0 \end\] を考えるのが自然であるような気がする.この方法で複素数を構成すると \[R_=E+I\] となり,複素数平面としてのイメージがしやすくなるという利点がある.

\(I\) と デルタの定義 \(E\) が一次独立であるようにするため \[I=\begin 0&b\\ c&0 \end\] と仮におくと \[I^2=bcE\] より \(bc=-1\) でなければならない. \(b,c\in\mathbb\) として \[(b,c)=(1,-1),(-1,1)\] である.後者を \(I\) とおけば,前者は \(-I\) で表せる.この解釈においても \[I=\begin 0&-1\\ 1&0 \end\] である.

複素数の性質

以後複素数の集合を \(\mathbb\) と呼ぶことにする. \(\mathbb\in M_2\l(\mathbb\r)\) である.ここで \(M_2\l(\mathbb\r)\) は実二次正方行列の集合とした.複素数の加減乗法は行列のものを用いて定義する. \(\mathbb\) には乗法の単位元 \(E\) ,零元 \(O\) , \(O\) でない元 \(A\) に対する逆元 \(A^\) の存在,乗法の可換性から \(\mathbb\) は体である.

\(\forall A,B\in \mathbb\ AB=BA\)

\(\sqrt=\sqrt\) を \(A\) の絶対値と呼ぶことにして,ここだけの記号として \(\l|A\r|\) ( \(\det A\) と区別することに注意)と表すことにする.

複素数の微分

行列の微分公式

オイラーの公式

写像 \(デルタの定義 \exp : \mathbb \to \mathbb\) ;微分可能 を以下を満たす写像として定義する. 写像 \(\exp\) が存在しかつ一通りに定まる,すなわち \(\forall r,\theta \in デルタの定義 \mathbb\) に対して \[\exp \l(rE+\theta I\r) =e^r \begin \cos \theta & -\sin \theta \\ \sin デルタの定義 \theta & \cos \theta \end =e^r R_=e^r \l(E\cos \theta +I\sin \theta \r)\] であることを示す.これは有名なオイラーの公式の行列表記である. (1)によって を示せば十分である.

その他の関数の拡張

複素数の積分

複素数の積分を以下で定義する. \[\int_^<> f\l(Z\r) \, dZ \equiv \lim_ \sum_^ f\l(Z_\r) \Delta Z_k\] デルタの定義 ただし \(\Delta Z_k=Z_-Z_\) とする.

コーシーの積分定理

\[\oint_ f\l(Z\r) \, dZ=O\] コーシーの積分定理により積分の値が経路によらないことを示すことができる. 行列の置換積分を示したい.以降簡単のため複素数 \(A\) の逆行列を \(\drac\) のように簡略化して表すことにする.

コーシーの積分公式

\(Z=xE+yI+A,x=\cos \theta ,y=\sin \theta\) とパラメータ表示することで \(C\) を中心 \(A\) の円周上の経路として \[\oint_^<> \l(Z-A\r) ^\, dZ=2\pi I\] がわかる.よって \[\oint_^<> f\l(Z\r) \l(Z-A\r) ^\, dZ = \oint_ \left\< f\l(Z\r) -f\l(A\r) \right\>\l(Z-A\r) ^\, dZ+2\pi If\l(A\r)\] であり第一項は \(C\) の半径 \(\rho\) として \(C\) 上において \(\l|f\l(Z\r) -f\l(A\r) \r| <\e\) とすると \[\l|\oint_\left\< f\l(Z\r) -f\l(A\r) \right\>\l(Z-A\r) ^\, dZ\r| \leq \oint_ \drac\e \, dZ=2\pi \rho\drac\e=2\pi \e\] であり, \(\e \to 0\) で \(2\pi \e \to 0\) になるので示す等式が得られた.

関連記事

よかったらシェアしてね!
  • URLをコピーしました!
  • URLをコピーしました!

コメント

コメントする

目次
閉じる